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Fully relativistic treatment of core states for a spin- 
dependent potential 
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Federal Republic of Germany 

Received 22 June 1989 

Abstract. An efficient and reliable algorithm for solving the Dirac equation for core-state 
wavefunctions in the presence of a spin-dependent potential is presented. The approach is 
applied to calculate the contributions to the hyperfine field of Fe, CO and Ni stemming from 
non-s core electrons. 

1. Introduction 

The interplay of relativistic effects (primarily spin-orbit coupling) and spin polarisation 
gives rise to a number of interesting effects, such as magneto-crystalline anisotropy and 
magneto-optical phenomena. A rigorous theoretical investigation of such effects should 
be based on a description of the electronic structure that takes relativistic effects as well 
as spin polarisation properly into account. The problem of dealing within the local spin- 
density formalism with the corresponding Dirac equation for a spin-dependent potential 
has been discussed in the past by several authors (Doniach and Sommers 1981, Feder et 
a1 1983, Strange et ai 1984). The solutions of the emerging sets of radial differential 
equations permit a more or less straightforward generalisation of conventional band- 
structure schemes. This has been shown for the KKR method (Feder et ai 1983, Strange 
et a1 1984) as well as for the LMTO method (Ebert 1988) and several corresponding 
relativistic spin-polarised band-structure calculations can now be found in the literature. 
In contrast to this situation for the conduction electrons, to our knowledge only one 
analogous calculation for the tightly bound core electrons has been done until now 
(Cortona et ai 1985). This situation presumably arises from the problem that the cor- 
responding core wavefunctions do not have unique spin-angular character and have to 
satisfy specific boundary conditions at the nuclear site and far away from it. Cortona et 
a1 (1985) have proposed an algorithm to deal with the corresponding complex boundary 
problem. In the following we present an alternative algorithm, which is very efficient, 
easy to implement and, we feel, clearer than the former approach. As an application of 
our method we calculate the contributions of non-s core electrons to the hyperfine field 
of Fe, which were previously ignored. Further applications of relativistic spin-polarised 
calculations of core wavefunctions are, for example, rigorous total energy calculations 
and investigations of the polarisation dependence of x-ray absorption by magnetic 
materials (MXD: magnetic x-ray dichroism; see, for example, Ebert et al1989a). 
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2. Solution of the ‘relativistic’ core-state eigenvalue problem for a spin-dependent 
potential 

From a technical point of view, the most important consequence of having a spin- 
dependent potential is that the corresponding solutions to the single-site Dirac equation 
do not have unique spin-angular character. This is due to the coupling of partial waves 
with the same quantum number p and parity, which is introduced by the spin-dependent 
part of the potential. Fortunately, it is justified to neglect this coupling other than for 
partial waves with the same y- and I-quantum numbers (Feder et a1 1983, Cortona et a1 
1985). Instead of dealing with an infinite set of differential equations one is left with the 
coupling of the two partial waves for the angular momentum j = I * 1 or, equivalently, 
K = + I  and -I - 1. This simplification leads finally to a set of at most four radial 
differential equations (Strange et a1 1984): 

dPA,/dr = -(K/r)pAf [(E - v)/C2 i- ~ I Q A ,  + ( B / C 2 ) ( x - ~  1 0 3  I x - A ) Q A ,  
d Q ~ , / a r  = (K/Y)&A, - ( E  - v ) p A ~  + B ( X A  1 O3 I x A ) p A f  + B ( x A  1 O3 Ixi)pAf 

(1) 
(2) 

where i labels the two possible independent solutions and the notation P = gr and Q = 
cfr has been used. V ( B )  stands for the spin-averaged (-dependent) part of the potential 
V + /3a3B, and A, -A and represent the sets of quantum numbers (K, p) ,  ( - K ,  p) and 
(-K - 1, p) ,  respectively. All other quantities have their usual meanings (Rose 1961). 
The last term in (2) is responsible for the coupling of the partial waves with quantum 
numbers A and A, i.e. for P i ,  and Q,, relations analogous to (1) and (2) hold with A and 

interchanged. For I y I = 1 + t no A - i  coupling is possible and there are only the two 
coupled equations for PA and Q A  with K = - I  - 1. 

A bound solution to the Dirac equation, representing a core state, has to be regular 
at the origin, the site of the nucleus, and decays exponentially at large distances. 
The conventional way to solve this boundary problem is to integrate the radial Dirac 
equations outwards and inwards and to match the solutions at a convenient matching 
radius. This technique can also be used for the case of a spin-dependent potential 
(Cortona et a1 1985). The corresponding outward integration starts with a series expan- 
sion: 

n 

with yi = ~ I C ;  - (2Z/c)*. The two independent solutions for the two values of i can be 
selected by setting K~ = K (K, = -K - 1) andpJii,o = 0 (P,,,;~ = 0). The inward integra- 
tion is started using the asymptotic form of P and Q for large r-values: 

( 5 )  
Q?, = q e-!Jr (6) 

p i n  - Ai - p e-pr 

with 

p = U-E - E2/c2  (7) 
and 

The above-mentioned matching of the inward and outward solutions can only be 
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E 

A '" - 

achieved if the wavefunctions are evaluated for the correct energy eigenvalue E of the 
boundary problem. Because the wavefunction will be normalised to 1, the matching 
depends on only four parameters: the relative weights of two solutions for the two values 
of i for outward and inward integration, Aout and A'" respectively, the relative scaling 
factor A of the superposed outward and inward wavefunctions and the energy E. For 
this reason, the matching at radius r ,  (normally the classical turning point) can be 
expressed thus: 

WoUt(r,, E) = AWin(rm,  E)  (9) 

with 

and 

where w = (out, in) and (Y = (1,2). 
To find the energy eigenvalue Efor  which (9) can be satisfied, we adopt the Newton- 

Raphson algorithm. A detailed discussion of this approach to the boundary problem 
together with program listings can be found in Press et a1 (1986). For our purpose we 
define the four-component error function 

Lc(f:' + AoutfEt) - cA(fi ,  + AInfi2)] 
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change dramatically, i.e. E can be initialised as for the paramagnetic case (Desclaux 
1969). A""'and A'" can be set to some percentage value andA is fixed to g ~ ~ t / g ~ l  to start 
the iteration. The step size APp (/3 = 1, . . . .  4) for evaluating the matrix (J,p)i can be 
chosen to be some percentage of the corresponding parameters P, and be decreased 
successively. If the starting values are not unreasonably chosen, the iteration converges 
very rapidly-normally within three to five iterations-to a relative change in the 
parameters of less than 

The description of the algorithm given above assumes that there is a coupling of the 
partial waves, i.e. 1 ,U 1 < I + t. For I p 1 = 1 + 4, A'"' and A'" are identically zero and there 
are only two parameters to be determined. If there is no coupling, the conventional 
algorithm (Liberman et a1 1965) used to find the energy eigenvalue for a paramagnetic 
potential can of course also be used to treat the spin-dependent potential. On comparing 
results obtained this way with results produced by an application of the above Newton- 
Raphson approach, perfect agreement was found for all cases studied so far. 

3. Application to Fe, CO and Ni 

The above-described approach for a relativistic spin-polarised calculation of core 
wavefunctions has been applied in a number of different cases. Here results for the pure 
ferromagnetic metals Fe, CO and Ni are presented that are based on the potentials 
tabulated by Moruzzi et a1 (1978). 

To obtain some idea of the influence of the spin-dependent part of the potential 
we show in figure 1 energy eigenvalues calculated by zeroth-, first- and second-order 
pertubation theory, compared with the exact results. Obviously the convergence of the 
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Figure 1. A core-state energy eigenvalue scheme for Fe calculated in zeroth, first- and 
second-order perturbation theory with respect to B(r )  (marked 0, 1 and 2, respectively) 
compared with the exact values. 
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Table 1. K-p-resolved hyperfine fields ( @ K , , a x f i l  (a pn X r/r3)e/pnl @ K J , , n x f i )  for the 2p,,, and 
2p3,, core states of Fe, with Qnwp = @ x , n r f i  + @i,nrfi (see (11) and (16)). 

K - 1  K t  = K n f  = K I  = = - K f t  - 1 K t  = Kff = - 
K P  

2~11, +1 -112 -83053.5 -398.3 - 12.7 
+1 +1/2 83097.4 -415.4 13.8 

2~31, -2 -312 -46876.0 - - 

-2 t 1 / 2  15592.2 427.5 77.5 
-2 -312 46789.1 - - 

-2 -1/2 -15603.0 410.3 -71.7 

Table 2. Theoretical hyperfine fields for Fe, CO and Ni split into their various contributions 
compared with experimental data (Stearns 1987, Bonnenberg et a1 1987). 

Fe CO Ni 

Is 
2s 

3s 

Conduction band: 

2P 

3P 

S 

P 
d 

Sum 

Experiment 

-17.7 - 14.9 
-515.8 -422.9 

1.7 1.5 
301.0 263.9 
-0.7 -0.7 

-42.1 -72.0 
0.7 1.7 

23.9 47.6 

-249.0 -195.8 

-339.0 -215.0 

-6.9 
-178.6 

0.7 
115.8 
-0.4 

-5.9 
0.8 

36.9 

-37.6 

-75.0 

perturbation series is normally quite rapid, but there are also exceptions. This depends, 
as one would expect, on the overlap of the spin-dependent part of the potential B(r)  and 
the unperturbed wavefunction. 

Nearly all calculations of hyperfine fields BHF for magnetic materials performed so 
far have been done in a non-relativistic or scalar relativistic manner. Recently, Ebert et 
a1 (1988) performed fully relativistic calculations for Fe, CO and Ni, which gave for the 
first time theoretical access to the orbital-dipolar contributions to the hyperfine fields 
coming from non-s conduction electrons. The contribution of non-s core electrons was, 
however, ignored in these calculations. Although this part of BHF should be small-it is 
a second-order effect-in general one cannot rule out its importance because there is a 
strong variation of the influence of B(r)  for the various core states. A fully relativistic 
calculation of the core hyperfine fields can be based on the expression 

(Rose 1961, Ebert et a1 1988). Because the potential is spin-dependent the sum over p 
for a given K no longer cancels to zero as for a paramagnetic potential. The fact that YnKp 
(see (9)) does not have unique spin-angular character (K and p are used only to label the 
core states in a perturbation theoretical sense) implies that there are mixing terms 
between K and - K - 1 partial waves. For the 2pli2 and 2p3p core states the corresponding 
decomposition is given in table 1. Obviously the 2p112 fields are higher than the 2p3/, 
fields because of the non-vanishing amplitude of the p112 wavefunctions at the nuclear 
site. The contributions of all core states for Fe, CO and Ni are summarised in table 2 
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together with the conduction band contributions (Ebert et a1 1988). Obviously the 
individual p core contributions to BHF are in general small compared with the s con- 
tributions. Because of the difference in sign the 2p and 3p contributions nearly cancel, 
giving rise to a rather small and positive p core contribution in contrast to the negative 
s core hyperfine field. This result has also been found in the case of 5d impurity atoms 
dissolved in Fe (Ebert et a1 1989b), where the non-s contributions arising from p, d and 
f electrons are of greater importance. 

Adding all terms in table 2, one finds that the inclusion of non-s core electrons 
cannot remove the discrepancy found earlier between the theoretical and experimental 
hyperfine fields of Fe, CO and Ni. For this reason, one has to conclude that this deviation, 
which is also found by other authors, points to a shortcoming of local spin-density theory 
in treating with sufficient accuracy the polarisation of the core wavefunction using a 
spin-split conduction band. 

4. Summary 

A fast and reliable algorithm has been presented to solve the boundary problem that 
occurs in relativistic calculations of core wavefunctions for a spin-dependent potential. 
An application to ferromagnetic Fe, Ni and CO has demonstrated that the influence of 
the spin-dependent potential on the various core states can vary strongly from case to 
case. Finally, it has been found that the neglect of non-s core-state contributions to the 
hyperfine fields is not responsible for the discrepancy between theory and experiment 
in the notoriously problematic case of Fe. 
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